Topic:3d Semantic Segmentation
What is 3d Semantic Segmentation? 3D Semantic Segmentation is a computer vision task that involves dividing a 3D point cloud or 3D mesh into semantically meaningful parts or regions. The goal of 3D semantic segmentation is to identify and label different objects and parts within a 3D scene, which can be used for applications such as robotics, autonomous driving, and augmented reality.
Papers and Code
Apr 19, 2025
Abstract:Vision Foundation Models (VFMs) have become a de facto choice for many downstream vision tasks, like image classification, image segmentation, and object localization. However, they can also provide significant utility for downstream 3D tasks that can leverage the cross-modal information (e.g., from paired image data). In our work, we further explore the utility of VFMs for adapting from a labeled source to unlabeled target data for the task of LiDAR-based 3D semantic segmentation. Our method consumes paired 2D-3D (image and point cloud) data and relies on the robust (cross-domain) features from a VFM to train a 3D backbone on a mix of labeled source and unlabeled target data. At the heart of our method lies a fusion network that is guided by both the image and point cloud streams, with their relative contributions adjusted based on the target domain. We extensively compare our proposed methodology with different state-of-the-art methods in several settings and achieve strong performance gains. For example, achieving an average improvement of 6.5 mIoU (over all tasks), when compared with the previous state-of-the-art.
Via

Apr 18, 2025
Abstract:Standard semantic instance segmentation provides useful, but inherently 2D information from a single image. To enable 3D analysis, one usually integrates absolute monocular depth estimation with instance segmentation. However, monocular depth is a difficult task. Instead, we leverage a simpler single-image task, occlusion-based relative depth ordering, providing coarser but useful 3D information. We show that relative depth ordering works more reliably from occlusions than from absolute depth. We propose to solve the joint task of relative depth ordering and segmentation of instances based on occlusions. We call this task Occlusion-Ordered Semantic Instance Segmentation (OOSIS). We develop an approach to OOSIS that extracts instances and their occlusion order simultaneously from oriented occlusion boundaries and semantic segmentation. Unlike popular detect-and-segment framework for instance segmentation, combining occlusion ordering with instance segmentation allows a simple and clean formulation of OOSIS as a labeling problem. As a part of our solution for OOSIS, we develop a novel oriented occlusion boundaries approach that significantly outperforms prior work. We also develop a new joint OOSIS metric based both on instance mask accuracy and correctness of their occlusion order. We achieve better performance than strong baselines on KINS and COCOA datasets.
Via

Apr 16, 2025
Abstract:Existing zero-shot 3D point cloud segmentation methods often struggle with limited transferability from seen classes to unseen classes and from semantic to visual space. To alleviate this, we introduce 3D-PointZshotS, a geometry-aware zero-shot segmentation framework that enhances both feature generation and alignment using latent geometric prototypes (LGPs). Specifically, we integrate LGPs into a generator via a cross-attention mechanism, enriching semantic features with fine-grained geometric details. To further enhance stability and generalization, we introduce a self-consistency loss, which enforces feature robustness against point-wise perturbations. Additionally, we re-represent visual and semantic features in a shared space, bridging the semantic-visual gap and facilitating knowledge transfer to unseen classes. Experiments on three real-world datasets, namely ScanNet, SemanticKITTI, and S3DIS, demonstrate that our method achieves superior performance over four baselines in terms of harmonic mIoU. The code is available at \href{https://github.com/LexieYang/3D-PointZshotS}{Github}.
Via

Apr 17, 2025
Abstract:This survey explores recent developments in generating digital twins from videos. Such digital twins can be used for robotics application, media content creation, or design and construction works. We analyze various approaches, including 3D Gaussian Splatting, generative in-painting, semantic segmentation, and foundation models highlighting their advantages and limitations. Additionally, we discuss challenges such as occlusions, lighting variations, and scalability, as well as potential future research directions. This survey aims to provide a comprehensive overview of state-of-the-art methodologies and their implications for real-world applications. Awesome list: https://github.com/ndrwmlnk/awesome-digital-twins
Via

Apr 17, 2025
Abstract:Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.
Via

Apr 16, 2025
Abstract:Diffusion Probabilistic Models (DPMs) have demonstrated significant potential in 3D medical image segmentation tasks. However, their high computational cost and inability to fully capture global 3D contextual information limit their practical applications. To address these challenges, we propose a novel text-guided diffusion model framework, TextDiffSeg. This method leverages a conditional diffusion framework that integrates 3D volumetric data with natural language descriptions, enabling cross-modal embedding and establishing a shared semantic space between visual and textual modalities. By enhancing the model's ability to recognize complex anatomical structures, TextDiffSeg incorporates innovative label embedding techniques and cross-modal attention mechanisms, effectively reducing computational complexity while preserving global 3D contextual integrity. Experimental results demonstrate that TextDiffSeg consistently outperforms existing methods in segmentation tasks involving kidney and pancreas tumors, as well as multi-organ segmentation scenarios. Ablation studies further validate the effectiveness of key components, highlighting the synergistic interaction between text fusion, image feature extractor, and label encoder. TextDiffSeg provides an efficient and accurate solution for 3D medical image segmentation, showcasing its broad applicability in clinical diagnosis and treatment planning.
Via

Apr 11, 2025
Abstract:In recent years, with the growing research and application of multimodal large language models (VLMs) in robotics, there has been an increasing trend of utilizing VLMs for robotic scene understanding tasks. Existing approaches that use VLMs for 3D Visual Grounding tasks often focus on obtaining scene information through geometric and visual information, overlooking the extraction of diverse semantic information from the scene and the understanding of rich implicit semantic attributes, such as appearance, physics, and affordance. The 3D scene graph, which combines geometry and language, is an ideal representation method for environmental perception and is an effective carrier for language models in 3D Visual Grounding tasks. To address these issues, we propose a diverse semantic map construction method specifically designed for robotic agents performing 3D Visual Grounding tasks. This method leverages VLMs to capture the latent semantic attributes and relations of objects within the scene and creates a Diverse Semantic Map (DSM) through a geometry sliding-window map construction strategy. We enhance the understanding of grounding information based on DSM and introduce a novel approach named DSM-Grounding. Experimental results show that our method outperforms current approaches in tasks like semantic segmentation and 3D Visual Grounding, particularly excelling in overall metrics compared to the state-of-the-art. In addition, we have deployed this method on robots to validate its effectiveness in navigation and grasping tasks.
* 8 pages, 6 figures, submitted to IROS, Project Page:
https://binicey.github.io/DSM
Via

Apr 13, 2025
Abstract:Recent advancements in Generalizable Gaussian Splatting have enabled robust 3D reconstruction from sparse input views by utilizing feed-forward Gaussian Splatting models, achieving superior cross-scene generalization. However, while many methods focus on geometric consistency, they often neglect the potential of text-driven guidance to enhance semantic understanding, which is crucial for accurately reconstructing fine-grained details in complex scenes. To address this limitation, we propose TextSplat--the first text-driven Generalizable Gaussian Splatting framework. By employing a text-guided fusion of diverse semantic cues, our framework learns robust cross-modal feature representations that improve the alignment of geometric and semantic information, producing high-fidelity 3D reconstructions. Specifically, our framework employs three parallel modules to obtain complementary representations: the Diffusion Prior Depth Estimator for accurate depth information, the Semantic Aware Segmentation Network for detailed semantic information, and the Multi-View Interaction Network for refined cross-view features. Then, in the Text-Guided Semantic Fusion Module, these representations are integrated via the text-guided and attention-based feature aggregation mechanism, resulting in enhanced 3D Gaussian parameters enriched with detailed semantic cues. Experimental results on various benchmark datasets demonstrate improved performance compared to existing methods across multiple evaluation metrics, validating the effectiveness of our framework. The code will be publicly available.
Via

Apr 09, 2025
Abstract:Open-set semantic mapping is crucial for open-world robots. Current mapping approaches either are limited by the depth range or only map beyond-range entities in constrained settings, where overall they fail to combine within-range and beyond-range observations. Furthermore, these methods make a trade-off between fine-grained semantics and efficiency. We introduce RayFronts, a unified representation that enables both dense and beyond-range efficient semantic mapping. RayFronts encodes task-agnostic open-set semantics to both in-range voxels and beyond-range rays encoded at map boundaries, empowering the robot to reduce search volumes significantly and make informed decisions both within & beyond sensory range, while running at 8.84 Hz on an Orin AGX. Benchmarking the within-range semantics shows that RayFronts's fine-grained image encoding provides 1.34x zero-shot 3D semantic segmentation performance while improving throughput by 16.5x. Traditionally, online mapping performance is entangled with other system components, complicating evaluation. We propose a planner-agnostic evaluation framework that captures the utility for online beyond-range search and exploration, and show RayFronts reduces search volume 2.2x more efficiently than the closest online baselines.
Via

Apr 14, 2025
Abstract:Multi-object grounding in 3D scenes involves localizing multiple objects based on natural language input. While previous work has primarily focused on single-object grounding, real-world scenarios often demand the localization of several objects. To tackle this challenge, we propose Hierarchical Contrastive Siamese Transformers (H-COST), which employs a Hierarchical Processing strategy to progressively refine object localization, enhancing the understanding of complex language instructions. Additionally, we introduce a Contrastive Siamese Transformer framework, where two networks with the identical structure are used: one auxiliary network processes robust object relations from ground-truth labels to guide and enhance the second network, the reference network, which operates on segmented point-cloud data. This contrastive mechanism strengthens the model' s semantic understanding and significantly enhances its ability to process complex point-cloud data. Our approach outperforms previous state-of-the-art methods by 9.5% on challenging multi-object grounding benchmarks.
Via
