Topic:3d Semantic Segmentation
What is 3d Semantic Segmentation? 3D Semantic Segmentation is a computer vision task that involves dividing a 3D point cloud or 3D mesh into semantically meaningful parts or regions. The goal of 3D semantic segmentation is to identify and label different objects and parts within a 3D scene, which can be used for applications such as robotics, autonomous driving, and augmented reality.
Papers and Code
Jun 26, 2025
Abstract:The rapid advancement of 3D vision-language models (VLMs) has spurred significant interest in interactive point cloud processing tasks, particularly for real-world applications. However, existing methods often underperform in point-level tasks, such as segmentation, due to missing direct 3D-text alignment, limiting their ability to link local 3D features with textual context. To solve this problem, we propose TSDASeg, a Two-Stage model coupled with a Direct cross-modal Alignment module and memory module for interactive point cloud Segmentation. We introduce the direct cross-modal alignment module to establish explicit alignment between 3D point clouds and textual/2D image data. Within the memory module, we employ multiple dedicated memory banks to separately store text features, visual features, and their cross-modal correspondence mappings. These memory banks are dynamically leveraged through self-attention and cross-attention mechanisms to update scene-specific features based on prior stored data, effectively addressing inconsistencies in interactive segmentation results across diverse scenarios. Experiments conducted on multiple 3D instruction, reference, and semantic segmentation datasets demonstrate that the proposed method achieves state-of-the-art performance.
Via

Jun 26, 2025
Abstract:Panoptic segmentation of 3D scenes, involving the segmentation and classification of object instances in a dense 3D reconstruction of a scene, is a challenging problem, especially when relying solely on unposed 2D images. Existing approaches typically leverage off-the-shelf models to extract per-frame 2D panoptic segmentations, before optimizing an implicit geometric representation (often based on NeRF) to integrate and fuse the 2D predictions. We argue that relying on 2D panoptic segmentation for a problem inherently 3D and multi-view is likely suboptimal as it fails to leverage the full potential of spatial relationships across views. In addition to requiring camera parameters, these approaches also necessitate computationally expensive test-time optimization for each scene. Instead, in this work, we propose a unified and integrated approach PanSt3R, which eliminates the need for test-time optimization by jointly predicting 3D geometry and multi-view panoptic segmentation in a single forward pass. Our approach builds upon recent advances in 3D reconstruction, specifically upon MUSt3R, a scalable multi-view version of DUSt3R, and enhances it with semantic awareness and multi-view panoptic segmentation capabilities. We additionally revisit the standard post-processing mask merging procedure and introduce a more principled approach for multi-view segmentation. We also introduce a simple method for generating novel-view predictions based on the predictions of PanSt3R and vanilla 3DGS. Overall, the proposed PanSt3R is conceptually simple, yet fast and scalable, and achieves state-of-the-art performance on several benchmarks, while being orders of magnitude faster than existing methods.
* Accepted at ICCV 2025
Via

Jun 24, 2025
Abstract:Multi-sensor fusion perception (MSFP) is a key technology for embodied AI, which can serve a variety of downstream tasks (e.g., 3D object detection and semantic segmentation) and application scenarios (e.g., autonomous driving and swarm robotics). Recently, impressive achievements on AI-based MSFP methods have been reviewed in relevant surveys. However, we observe that the existing surveys have some limitations after a rigorous and detailed investigation. For one thing, most surveys are oriented to a single task or research field, such as 3D object detection or autonomous driving. Therefore, researchers in other related tasks often find it difficult to benefit directly. For another, most surveys only introduce MSFP from a single perspective of multi-modal fusion, while lacking consideration of the diversity of MSFP methods, such as multi-view fusion and time-series fusion. To this end, in this paper, we hope to organize MSFP research from a task-agnostic perspective, where methods are reported from various technical views. Specifically, we first introduce the background of MSFP. Next, we review multi-modal and multi-agent fusion methods. A step further, time-series fusion methods are analyzed. In the era of LLM, we also investigate multimodal LLM fusion methods. Finally, we discuss open challenges and future directions for MSFP. We hope this survey can help researchers understand the important progress in MSFP and provide possible insights for future research.
Via

Jun 26, 2025
Abstract:We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
* Accepted by ICCV2025, Project Page: https://SAM4D-Project.github.io
Via

Jun 24, 2025
Abstract:Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
Via

Jun 24, 2025
Abstract:We present AnchorDP3, a diffusion policy framework for dual-arm robotic manipulation that achieves state-of-the-art performance in highly randomized environments. AnchorDP3 integrates three key innovations: (1) Simulator-Supervised Semantic Segmentation, using rendered ground truth to explicitly segment task-critical objects within the point cloud, which provides strong affordance priors; (2) Task-Conditioned Feature Encoders, lightweight modules processing augmented point clouds per task, enabling efficient multi-task learning through a shared diffusion-based action expert; (3) Affordance-Anchored Keypose Diffusion with Full State Supervision, replacing dense trajectory prediction with sparse, geometrically meaningful action anchors, i.e., keyposes such as pre-grasp pose, grasp pose directly anchored to affordances, drastically simplifying the prediction space; the action expert is forced to predict both robot joint angles and end-effector poses simultaneously, which exploits geometric consistency to accelerate convergence and boost accuracy. Trained on large-scale, procedurally generated simulation data, AnchorDP3 achieves a 98.7% average success rate in the RoboTwin benchmark across diverse tasks under extreme randomization of objects, clutter, table height, lighting, and backgrounds. This framework, when integrated with the RoboTwin real-to-sim pipeline, has the potential to enable fully autonomous generation of deployable visuomotor policies from only scene and instruction, totally eliminating human demonstrations from learning manipulation skills.
Via

Jun 16, 2025
Abstract:Semantic querying in complex 3D scenes through free-form language presents a significant challenge. Existing 3D scene understanding methods use large-scale training data and CLIP to align text queries with 3D semantic features. However, their reliance on predefined vocabulary priors from training data hinders free-form semantic querying. Besides, recent advanced methods rely on LLMs for scene understanding but lack comprehensive 3D scene-level information and often overlook the potential inconsistencies in LLM-generated outputs. In our paper, we propose FreeQ-Graph, which enables Free-form Querying with a semantic consistent scene Graph for 3D scene understanding. The core idea is to encode free-form queries from a complete and accurate 3D scene graph without predefined vocabularies, and to align them with 3D consistent semantic labels, which accomplished through three key steps. We initiate by constructing a complete and accurate 3D scene graph that maps free-form objects and their relations through LLM and LVLM guidance, entirely free from training data or predefined priors. Most importantly, we align graph nodes with accurate semantic labels by leveraging 3D semantic aligned features from merged superpoints, enhancing 3D semantic consistency. To enable free-form semantic querying, we then design an LLM-based reasoning algorithm that combines scene-level and object-level information to intricate reasoning. We conducted extensive experiments on 3D semantic grounding, segmentation, and complex querying tasks, while also validating the accuracy of graph generation. Experiments on 6 datasets show that our model excels in both complex free-form semantic queries and intricate relational reasoning.
Via

Jun 17, 2025
Abstract:Scene graphs have emerged as a powerful tool for robots, providing a structured representation of spatial and semantic relationships for advanced task planning. Despite their potential, conventional 3D indoor scene graphs face critical limitations, particularly under- and over-segmentation of room layers in structurally complex environments. Under-segmentation misclassifies non-traversable areas as part of a room, often in open spaces, while over-segmentation fragments a single room into overlapping segments in complex environments. These issues stem from naive voxel-based map representations that rely solely on geometric proximity, disregarding the structural constraints of traversable spaces and resulting in inconsistent room layers within scene graphs. To the best of our knowledge, this work is the first to tackle segmentation inconsistency as a challenge and address it with Traversability-Aware Consistent Scene Graphs (TACS-Graphs), a novel framework that integrates ground robot traversability with room segmentation. By leveraging traversability as a key factor in defining room boundaries, the proposed method achieves a more semantically meaningful and topologically coherent segmentation, effectively mitigating the inaccuracies of voxel-based scene graph approaches in complex environments. Furthermore, the enhanced segmentation consistency improves loop closure detection efficiency in the proposed Consistent Scene Graph-leveraging Loop Closure Detection (CoSG-LCD) leading to higher pose estimation accuracy. Experimental results confirm that the proposed approach outperforms state-of-the-art methods in terms of scene graph consistency and pose graph optimization performance.
* Accepted by IROS 2025
Via

Jun 09, 2025
Abstract:We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
* CVPR 2025. Code and data are available at:
https://github.com/vLAR-group/LogoSP
Via

Jun 17, 2025
Abstract:This paper presents VisLanding, a monocular 3D perception-based framework for safe UAV (Unmanned Aerial Vehicle) landing. Addressing the core challenge of autonomous UAV landing in complex and unknown environments, this study innovatively leverages the depth-normal synergy prediction capabilities of the Metric3D V2 model to construct an end-to-end safe landing zones (SLZ) estimation framework. By introducing a safe zone segmentation branch, we transform the landing zone estimation task into a binary semantic segmentation problem. The model is fine-tuned and annotated using the WildUAV dataset from a UAV perspective, while a cross-domain evaluation dataset is constructed to validate the model's robustness. Experimental results demonstrate that VisLanding significantly enhances the accuracy of safe zone identification through a depth-normal joint optimization mechanism, while retaining the zero-shot generalization advantages of Metric3D V2. The proposed method exhibits superior generalization and robustness in cross-domain testing compared to other approaches. Furthermore, it enables the estimation of landing zone area by integrating predicted depth and normal information, providing critical decision-making support for practical applications.
* Accepted by IROS2025
Via
